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Stability of van der Waals-London bonds outside metal 
surfaces 
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Department of Physics, Monash University. Victoria. Australia 3168 

Received 16 August 1994, in final form 17 October 1994 

Abshact We analyse the weakening and stability of a van der Waals-London chemical bond 
parallel to and & a  height z above a perfect metal surface. The~bond is considered in both 
the retarded (large-r) and non-rebrded (small-z) regions. By considering the energy difference 
between the dissociated and undissociated species, we discuss the criteria in which bond breakup 
may occur, relevant to dissociative physisorption. Our results are of interest to surface chemistry 
and catalysis. 

1. Introduction 

The subject of the behaviour of chemicalt bonds outside metal surfaces has been of interest 
for several years, particularly in MBE and MOCVD technology. In 1976 Mahanty and 
March [I] developed a theory which showed that the non-retarded long-range dispersion 
interaction between a molecular pair is weakened near a metal surface (a simple picture to 
explain this is that of the second-order weakening of polarization effects due io a molecule 
via its electrical image). Although not discussed in that earlier work, this model lends itself 
to an analysis of the stability of the bond, and can be used with appropriate parameters to 
predict the possibility of breakup. This result is of considerable interest in physisorption 
processes, for example Xe on Al. 

In the retarded region (distances of lOOA or more from the surface), the weakening 
of the bond is naturally quite small, but for two extremely large molecules (like fullerenes 
 or^ hyperfullerenes with anomalously large polarizabilities [Z]) interacting via a dispersion 
force, the effect may be significant enough to be taken into account when considering 
the stability of such bonds between a pair of these types of molecules in this region. In 
such a context, the model outlined below is a considerabIy simplified picture that treats 
the dispersion interaction of fullerenes or hyperfullerenes as the interaction of two large 
spherical shells. Of course, any consideration of such a bond in this region would involve 
the recalculation of the weakening function F(s)$ taking retardation into account, as we 
shall see below. 

In section 2 we review the earlier theory and the results obtained from it. In section 3 
we extend the earlier  work by calculating the weakening function in the retarded region. 
In section 4 we derive a criteria for each region, which predicts whether bond breakup 

t In keeping with the nomenclature of Mahanty and March [I]. in this work we use the word 'chemical' to  
describe the van der Waals bond, despite being aware that some interpretations of the chemical bond exclude the 
van der Waals interaction on the grounds that it involves photon exchange as opposed to electron exchange. 
f This is equation (5) of [I]. 

- 
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can occur. The criteria we derive neglects the actual processes involved in overcoming the 
energy barrier in the dissociative process (if favoured). We shall complete our analysis by 
discussing the role of dynamics in dispersion bond breakup. 
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2. Review of earlier theory 

In the theory of Mahanty and March [I] the weakening of the dispersion interaction 
(-ALondon/p6 in free space, where p is the intermolecular distance and the bond is parallel 
to the surface) is given by the form 

(1) 
-- -A’@) -ALondonF(s) - 

P6 P6 

where s =-2z/p, and z is the distance of the molecular pair from the surface. The function 
F e )  is calculated to be 

1 - 4(1 + s2/4) 
F(s)  = 1 + 

(1 + s2)3 3(1 + 
We note that F(s )  - f + s4 for s + 0 while F ( s )  - 1 - 1/3s3 for s + 00 (we shall see 
later that this latter power law for the infinity limit is incorrect, and has to be modified by 
takinz retardation into account). 

The effective dispersion interaction for the molecular pair, to leading order in  the 
polarizabilities, is given by 

E E1 + EZ+EIZ (3) 

where El and E2 reflect the interaction of the individual molecules of the pair with their 
respective images, and El2 contains the direct dispersion interaction between one molecule 
and the other and an indirect interaction via the other’s image. The energies are given 
by [lli 

and 

where a,(iF) is the dynamic polarizability of the j th  molecule and the G are the appropriate 
Green functions defined below. This result is achieved through the dyadic Green function 

t The argument in the Green functions in the subsequent equations is as follows: (11) implies that molecule I is 
at position T and the image of molecule 1 is at r:, etc. 
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G,  which connects the electric field at T to a dipole source p ( w )  at T' with a frequency W ,  

i.e. 

E(T)  = G(T, T'; o ) ~ ( w ) .  (7) 

In the presence of a dielectric surface (taken to be in the (x. y )  plane with both T and T' 
outside the dielectric) G(T, T'; O) has the form 

G(T, T'; W )  = GD(T - T') - A ( o ) G ~ ( T ,  T') (8) 

where GD(T - T') is due to a freespace dipole source at T', having the form 

1 
GD(T - T') = -(VV')- (9) 

IT - T'I 

and GI(?, T') is due to the semi-infinite dielectric medium. Image theory gives 

where T ; ~  is the image of the point T' and A(@) = [ E ( w )  - I ] / [ E ( w )  + 11 [3]  with E ( @ )  
being the frequency-dependent dielectric function. The results of [l] are reproduced here 
for the parallel case and with the correction of a small misprint: 

1 
(1 1) 

( 12) 

TrGI(I1) = -- 

Tr GI (22) = - - 

223 

2z3 
1 

6 6 - SA(w)(p2 + zz) Tr[G(21)G(12)] = - + 
p6 (pz + 4 ~ ' ) ~  p3(pz + 4z2)(5/2) (13) 

where pz = xz f y 2 .  By assuming the dielectric to be a perfect conductor the 
function A ( @ )  + 1, and we obtain the weakening function F ( s )  through (6) taking 
A = ( 3 R / W  J_",.I ( i 6 ) W W t  PI. 

3. Retardation 

The essential addition to the above theory lies in including retardation effects for large z .  
In the Mahanty and March paper [ l ]  it was correctly surmised that retardation effects are 
unimportant for large p and small z .  However for small p and large z ,  the distance of the 
molecules from their images may be large enough for retardation effects to be included. This 
is important in considering very large neutral molecule-molecule dispersion interactions, for 
example Ca and larger. The correction for the large-z behaviour merely involves modifying 
the image dyadic Green function to the form 

eiKlr-r;mi 
GI(? - T:,,,, 0)  = -(VV' + k Z f ) -  

lr - riml 
(14) 
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where f is the unit dyadic, k = w/c, w is the frequency of the molecular dipole (of order 
10'5-10'6s) and c is the speed of light. The calculation can then proceed as before, after 
noting that the evaluation OF equations (4)-(6) is slightly more complicated because the 
dyadics are now frequency dependent. Their respective traces are evaluated to be 
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6 e z i k d  
Tr[G(21)G(12)1 = - + -[3@2(-ikp@1/2 + I)'+ 2k2p2@3(-ikp@'12 + 1) 

P6 P6$5 
- 2@2(-ikp@'/2 + l)(-kzp2@ - 3 i k ~ @ ' / ~  + 3) + 3k4p4c4 
+&-k 2 2  p @-3ikp@'lz+3) 2 -2k 2 2 2  p @ ( 2 - @ ) ( - k 2 p 2 @ - 3 i k p @ 1 / 2 + 3 ) 1  

2$kp4'/2 
-- 64512 [-W(-ikP@'/' + 1) + (1 + @)(-k2pz@ - 3ikp@1/2 + 3)] (17) P 

where @ = ( I  + 4z2/p2). To evaluate El2 (equation (6)) we use the approximation that 
.(it) = ol(O), the static polarizability. This approximation is valid because for large z 
only values of which are small will contribute to the integral, so to zeroth order .(it) 
can be replaced with a(0) E]. W~th this approximation all terms in the integral become 
gamma functions, which can be evaluated easily. Casimir and Polder [6] showed that two 
atoms interacting through a retarded dispersion force produce an energy contribution that 
behaves as l/r7, where r is the interatomic distance. This is precisely what we observe in 
this context between one molecule and the retarded interaction with the other's image. The 
interaction energy between the molecules in the presence of the perfectly conducting surface 
now has a l /p6 dependence and a l/p7 dependence due to the retarded image interaction. 
Evaluating (6) and using the London formula? A = $U, (O)CZ~(O)WO we evaluate Elz to be 

We can see that a dimensionless weakening function F ( s )  cannot be factored out of the 
above expression, but we can form 

In terms of a van der Waals-London interaction we have 

. .  A' AFret(s7 P )  ~~ 

P6 P6 
- =  

and note that as s -+ CO, F ( s ,  p )  - 1 - (2c/3awp)(8/s4) compared With the incorrect 
F ( s )  - 1 - 113s' for the non-retarded expression. If we evaluate El and E2 we get 

E h C f f j ( 0 )  - j = 1 . 2  
- 4nz4 

which exhibits the Casimir-Polder form of an atom interacting with a perfect conducting 
surface. 

t The constant w,, in the following equations is the first allowed dipole transition fquency,  see 141, 
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4. Stability of the chemical bond 

A complete analysis of the stability of the van der Waals-London chemical bond in the 
presence of a perfect metal surface requires a full quantum mechanical treatment [7], i.e. 
ab initio the Schrodinger equation. This may suggest that, in addition to ALndon, the 
other parameters involved in the total interaction of the molecular pair with the surface 
may also be dependent upon distance, and at best a Lennard-Jones potential is a simplified 
approximation. It is clear as we shall see later (see the proof of theorem 1 in the next 
subsection) that the Lennard-Jones potential on its own cannot lead to dissociation. This is 
because there never exists a solution pmin = m, zmn # 0 (the dissociative solution) which 
minimizes the static energy. In order to bypass the difficulties mentioned above, and since 
solving the ab initio problem is much more complicated, we adopt the following strategy, 
which is valid for the purpose of deriving a dissociation criteria. This approach consists of 
comparing the minimum total (static) energy of the two states (dissociated or bonded) near 
the surface using different Lennard-Jones models appropriate to the two cases. The price 
to be paid, however, is that we will not be able to assess the energy barriers and dynamics 
with this scheme. The simplification which results is nevertheless worthwhile. Our model 
reflects the main atiiibutes of the physics of the system in the static condition. The criterion 
is derived by minimizing the total static energy of a molecular pair approaching the surface 
and comparing this minimum energy with the minimum static energy of a dissociated pair 
approaching the surface. Later, we shall discuss the role that dynamics plays in helping the 
individual molecules overcome the barrier to dissociative physisorption. 

For the following analysis we assume a LennardJones potential for the intermolecular 
interaction, modified by the appropriate weakening function for the van der Waals-London 
part, while for the surface the hard-core repulsion due to the effect of the surface is taken 
to be pSp/z9 [81. 

4.1. The non-retarded region 

For the non-retarded region, we have 

or more precisely 

where ysep = 7iw0ci(O)/8. Here we have made the approximation that the surface sees not 
the interacting molecular pair,. but two separate non-interacting molecules with respect to 
the ysep and BSep terms. The minimum energy is found by minimizing with respect to both p 
and z. It would seem possible that the weakening function makes it energetically favourable 
for bond breakup to occur by making the minimum energy of Hbond more than the minimum 
energy of the separated molecules reflected by the Hamiltonian Hsep, given by 

which represents the energy of two separated molecules interacting only with the surface. 
However, this is not the case and we construct a heuristic proof of the following theorem. 



24 B C den Hertog and T C Choy 

El _________.. HZ 

Theorem 1. 

H b d m i n )  < H,ep(min) 

for any set of arbitrary parameters yaep. Bspp, A and B .  

ProoJ Let 

Now 

312 -A2 f2 
Hz(min) x - 4Ys, HI (min) = - 

3(38*p)’/2 4B 

where f is a parameter which varies between 213 and I t .  Note also that HI = Hsep. Now 
HI is a function of z only while Hz is a function of both p and z. We can minimize Hz 
with respect to p for each value of z an( denote this by &(z) and the value of p that 
minimizes $(z) by b(z). The function Hz(t) is negative, as can be seen from (27), and 
the behaviour of HI and &(z) is shown schematically in figure 1. At zminr for which HI 
is a minimum, we have 

Hbond(b(Zmin). zmin) Hl(zmin) f k 2 ( Z m i d  Hl(Zmin). (28) 

This implies that 

Hb.,dmin) < HbOnd(b(tmio), zmid < H1(min) (2% 

or therefore 

Hb,,d(min) < %&W. (30) 

This concludes the proof. 

t As F(s) in the non.refarded region varies between 213 and 1 
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However, a more realistic Hamiltonian than Hbond is 

which reflects the fact thar while there is an intermolecular bond, the surface attracts 
an interacting molecule-molecule system, not two non-interacting ones. Here &"d = 
kYb,,d(O)wo/8.  The parameter Olbnd(0) is the static polarizability of the molecular pair. 
In general, a molecular pair will not have a polarizability that is just twice the individual 
molecule polarizabilities; usually J+,,,od < 2y,,. With this Hamiltonian, bond breakup is 
possible, and in fact one can derive a criteria to predict its breakup. 

To get an exact analytical expression for the bond lengths and minimum energy of He$ 
one is required to find the solution to two highly coupled polynomials. which is analytically 
intractable. However, another approach outlined below is more fruitful. A molecular pair 
interacting through a dispersion force in free space (not near a surface) has a bond length 
pmp, where the subscript 'mp' means molecular pair. Numerical calculations show that near 
a surface this bond length~is increased by a small amount to a new bond length pmp+sur 
such that (pmp+sur - pmp)/pmp << 1. Similarly, one molecule interacting with a surface has 
a surface bond length zrur which is perturbed a small amount by the presence of another 
molecule, so that the new surface bond length is zsur+mp such that l(zsur+mp << 1. 
Therefore, we can get an approximate analytical expression (in terms of parameters only) 
for the bond lengths and the minimum energy of Hetd by expanding this Hamiltonian to 
second order around pmp and zsur. If we let 

and using 

(33) ~ m p  = (2B/A) 'I6  zsvr = (3Bsep/Ysep) 116 

then the solution that minimizes the second-order H& is 

eu - d q  eq - du 
2(ee - &) Zmp+mr 2(ec - d z )  Pmp+sw (34) 

where U = 2dzsur + k p m P  - a  and q = 2ezSur + 2dpmp - b.  Substitution of these solutions 
into the second-order expansion of then yields the minimum energy of the full surface 
molecular-pair interaction (to second order). Comparing this result to the minimum energy 
of Hsep yields the criterion (which is only dependent on the parameters A ,  B ,  &nd, bSep and 
yep) for bond breakup. Symbolically, the criterion for dissociation? is 

Algebraically, this criterion is very complicated, but the above scheme can be handled easily 
by a symbolic manipulation package. 

t For molecular species on the borderline of dissociation, expansion to third order in H& may be required 
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Here z is only a parameter, and the above Hamiltonian is minimized with respect to p 
only. The parameter Bond is given by hcab,,d(0)/4n. By the same reasoning as in the 
non-retarded region we can expand around pmp to second order. If we let 

This result can be  substituted into the above Hamiltonian, which can then be compared with 
the Hamiltonian 

which will yield a criterion given symbolically by 

This yields the retarded region criterion for bond breakup involving only the parameters 
ySep, fiOndr z .  A and B .  
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5. Discussion 

In the non-retarded region we can see, by examining HE$, and HSep, that when the 
intermolecular Lennard-Jones interaction is in general an order of magnitude less than 
the molecular-pair surface interaction, bond breakup is possible if the species is such that 
2y,, > ybond. In figure 2 we show the difference in surface potentials felt by a molecular 
pair and two dissociated molecules in this region. Note that as z + 00 the molecular-pair 
potential energy approaches their binding energy in free space, while the potential energy 
curve representing the dissociated pair naturally asymptotes to zero in this limit. Figure 2 
shows that as the molecular pair approaches the surface, it becomes energetically favourable 
for dissociation to occur. The choice of parameters is A = 400eVA6, B~ = 106eVA , 
nand = 20eVA3, psep = 12 x 10’eVA and yss = 12.5eVA’. This combination of 
parameters (typical of small molecules) is such that they satisfy the criterion for bond 
breakup to occur, i.e. the potential felt by the two separated molecules produces a lower 
minimum energy than the bonded case. The energies are calculated using the above method 
to be Hg\(min) = -0.26eV. compared to HSp(min) = -0.31 eV. 

In the retarded region the weakening of the bond is naturally very small, so for bond 
breakup to occur in this region each molecule species, when dissociated, must have a large 
polarizability and thus a significant interaction with the surface which therefore lowers the 
energy. However, when they exist as a molecular pair the van der Waals bond must be 
weak and the pair polarizability be such that nand < 2y,,,. The most appropriate species 
likely to fulfill these requirements are the fullerenes and hyperfullerenes. Their anomalously 
large polarizabilities [Z] make~the attraction with the surface at lOOA significant, if their 
bond energy is of the same order of magnitude (of order eV). For these large molecules, 
retardation between the molecules themselves may further weaken their bond. 

As stated before, the analysis conducted so far has ignored the dynamical or other 
processes that constitute the real system. This paper has been a consideration of statics 
alone; however. it is worthwhile to discuss what additional processes are required for 
dissociative physisorption in our model system. 

One process which seems an obvious candidate is simply the thermal contribution to the 
total energy. A gas of paired van der Waals bonded molecules will have an accompanying 
Maxwell-Boltzmann distribution. The fraction of molecules with enough thermal energy to 
overcome the energy banier may dissociate. It is,also possible that dissociation may occur 
purely through quantum mechanical tunneling (depending on the width of the barrier), or 
that vibrational energies of the bond are enough to get over the barrier. While a knowledge 
of the actual size of the energy barrier requires a more sophisticated quantum mechanical 
calculation, an estimate can be obtained from a graph like figure 2. One can see that for 
favourable cases such a barrier is quite small in view of the small differences in energies 
and between zSw and z ~ ~ + ~ ~  

17. 

.9 

~ 

~ 

6. Conclusion 

By utilizing the theory of Mahanty and March, and extending it to take retardation into 
account (for large z )  between one molecule and the image of another, we have examined 
the stability of molecular pairs bonded parallel to a metallic surface and derived a criterion 
for the possibility of dissociative physisorption to occur, in both retarded and non-retard& 
regions. 
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